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AESTRACT

The theory of finite Fourier transforms is de\;eloped
from the definitions of infinite transforms and applied to
the computation of convolutions, correlations, and power
spectra. Detailed procedures for these computations are
given, including listings and writeups of FORTRAN subroutines.
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1. INTRODUCTION

For the past several months, E. A. Flinn, J. F. Claerbout,
and I have been examining some practical and computational
aspects of the thecry of Fourier transforms. These efforts have
resulted in a set of programs for performing operations on time
series based on the Cooley-Tukey (References 1,2) hyper-rapid

Fourier transform method. Using this method, computations on

. seismic array data such as the calculation of convolutions,

correlations, spectra, and digital filters have been speeded up
by factors of three or four and sometimes even ten. The purpose
of this report is to communicate these results in a straight-
forward manner and to offer some motivat;on'for their derivation
as well as for future efforts in this rrea. Writeups and
listings of the programs discussed here are included as appendi-

ces to this report.

2. THE FINITE AND DISCRETE FOURIER TRANSFORMS

In the case of continuous data of infi;;k% length, the

Fourier transform pair is usually written as: L

-\\-\-".
£ g , |:
A(w) = (2m) 2 f £(t)e t¥a¢ )
-0 e
(1)
P -
f(t) = (2m) : I A(w)eIWtdw

The first of these, going from time to frequency, is referred
|




to as the direct transform and the other as the inverse trans-
form. Sometimes the direct transform is written with a facter
of 1 in front of the integral and the inverse with a factor of
1/2m . These are, of course, equivalent to the above definition.
Quantities of interest, such as Spectra, etc., involve magni-
tudes or squares of one transform and the factor must be

inserted or taken out, depending on which definition is ﬁsed,

tu preserve the proper dimensions.

Two drawbacks of these definitions for digital compu-
tations are apparent: First, the integrals must be approxi-
mated by sums in the digital compute., which implies that both
transforms involve sampled variables. Second, the infinite
limits on the sums are impossible in practice. Clearly, these
sums must be truncated, as they do not in general converge over
a finite interval. As a result Fourier transforms as such are
never really computed by a digital computer. Instead, the
complex samples of a direct transform are approximated by the
cosine and sine coefficients of Fourier series representation

of the input data. The definitions for these are:

1f x(t) = 2: [an cos (mnt/T) + bn sin (nnt/T)] 2 (2)
n=0
T
1 =
then a° = j; x(t) dt bo 0]
(3)
5 T .
a = = . x(t) cos (mnt/T) At
L=
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2 T
b = Y f x(t) sin (nnt/T) dt
o
If N samples of the data are taken at equally spaced
intervals At = T/N, the integrals (3) becomes sums and the
frequency sum in (2) goes from DC to the folding frequency,

i.e., k = 0 to N/2T . The equations are then written as:

!

N/2
x(j) = z: [ak cos (2mik/N) + bk sin (2njk/N)J
k=0
(4)
N-1
a =%V .4 b =0
o N ] o
§=0
N-1 N-1
a =2 x(j) cos (2mjk/N) b = 2'2: x(j) sin (2mjk/N) (5
k N k N !
3=0 3=0

where t has been replaced by jot . By now defining:
A(k) =2 (a -ib), a(0)=a (6)
2 'k k"’ o

and realizina thit a real time series contains only real points, we

can write (4) as:

N/2

x(3) =Z A(k) exp (2mijk/N) (7)
k=0

A grecat deal of symmetry between the two transforms can be
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preserved if the sum in (7) is summed up to N-1 . Redundant
points in the spectrum are included (since the transforms are
periodic) but the computational procedures are simplified.

It is also convenient to split the factor of 1/N appearing in
(5) into two factors of 1//N , one in front of each transform.

By defining a complex number:

w = exp (2wi/N) , (8)

the two transforms can now be written as

N-1

AK) = = ) £(3) W (9)
=0
N-1

£(3) = 7= ) Al WF (10)
k=0

It can be shown that the set of direct Fourier trans-
form points, between DC and the folding. frequency, contains
the same amount of informatiorn as the real data series: The
transform includes N/2 distinct points, which with the DC term
makes a total of N/2 + 1 complex points. Equation (9) shows
that both the DC and the folding frequency point are purely
real; thus, the Fourier transform contains (N/2-1)*2+2%*1 num-
bers. This is exactly the same amount of information con-
tained in the real time series. It also suggests that the

existence of one transform should imply the existence of the

other.

If there are N/2+1 non-redundant points in the direct

transform, then the sampling interval in frequency must be

- 4 -




(N/2T}/(N/2) = 1/T . Thus, the product of the time and frequency

variables 1is:

. . 1 AT 2mi

w = P - = ——

iwt = i(2nk T) (JN) N jk (11)
This equation relates the arguments in the two exponentials,
one in the continueus transform and the other in the finite

transform (Equations 1, 9, and 10).

3. TWO- AND THREE-DIMENSIONAL FOURIER TRANSFORMS

Two- and three-dimensional direct Fourier transforms

are seen to be

Nl-l Nz-l
- 1 E: .. -j. k -j.k
A(kl,kz) /ﬁzﬁ; 2: x(Jl.Jz) w, 171 W, 22 (12)
]l=0 ]2=0
and
N, - p -1
Nl 1 N2 1 N3
, PR T }‘ z 8L -j_k, -
Alky . kj.k,) /N NN, y d ¥(3y:35035) w) 171
j1=0 j2=0 j3=0
-j. k -i.k. .
LWy 7272 w7373 (13)
We can break up Equation (12) as follows:
Nz-l
1 : -j k.
= 1 ) (14
A(k, k) e ; B(k .3,) w, 722 (14)




This calculation requires N, one-dimensional transforms: we

1
have defined

N -1
’ A ! : -3,k
Bk .3,) = 7§T E: x(3,.3,) w,7 7171 (15)

Jl=0

which requires N2 one-dimensional transforms. Thus, Nl + N2
one-dimensional transforms are required to compute the single

two-dimensicnal transform.

We can break up Equation (13) as follows:

N3-l
i - -Jj .k
‘ Alk) .k, k) ~; ) Clk k. i) w733 (16)
) j,=0
, 3
which requires NlN2 one-dimensional transforms; we have de-
fined
Nl-l N2-1
T 1 A oa -3k, , T35k
. = (
Clkyrkyrdy) NN ) ). ®(31035034) wy 11w, 272 (17)
J =0 j2=(

which requires N3 two-dimensional transforms. Thus, NlN2 one-

dimensional transforms and N3 two-dimensional transforms are

needed to compute the single three-dimensional transfcrm.




4. ALGEBRAIC DISCUSSIiON

Equations (9) and (10) suggest a more elegant and compact

way to write the two transfor s. We define the vector A as
the transform with elements (A)k = A(k), and define the vector
F as the time series with elements (F)j = F(j) . The process

of transforming is seen to be equivalent to matrix multipli-

cation by a matrix W whose elements are (w)jk = ka

' +

A=Wf§ (18)
and f = WA , (19)

where the dagaer indicates Hermitian conjugation. Substituting

(19) into (18) gives the following important identity:
+
W = W+W =1 . (20)

This is the definition of unitarity for the transformation W
It is a generalization of orthogonality for complex matrices

and assures Parseval's theorem:

+ +
AA=ff . . (21)

W preserves "length" between the two domiins. The identity is
actually proved by writing‘qut the terms in the product:
\ .. :
N-1
1 .
5 [exp(2n1/N)]

m=0

- [exp(-Zni/N)]mk = 63

e




or

7
s

whid-k) o 53 (22)

Z =

0

3
1]

This last important relation is seen to be true by the use of"

a phase diagram:

w20 :;35
wld w0 for j -k =5 and N = 6
wl0 wo

The Cooley-Tukey method factors the W matrix, if its

order is a power of two, into L + 1 sparse matrices, where L

is the power of two:

W=s§ S . -..8 S
Multiplying L + 1 times by these sparse matrices can in some
cases reduce the computing time by many tens of times. This

factorization is proved by Good (3) and organized for compu-

tation by Rader (4).

For the case N = 8 the W matrix is:




r——

1 1 1 1 ] 1 1 1 \
1 2 3 4 5 6 7
1 w w w w W w w
2 4 5 8 10 12 14
1 W w w w w w w
.- 11 w3 w6 w9 w12 w15 w18 w21
o 4 8 12 16 20 24 28 (22.1)
1 w w w w w w w .
5 10 15 20 25 30 35
1 w w w w w w w
6 12 18 24 30 36 42
1 w w w w w w w
\ 7 14 21 28 35 42 49
] w w w w w

The L + 1 = 4 transformations are graphically illustrated

by the following diagram in Rader's notation (Reference 4):

s s s s B
INDEX BINARY ARRAY 1 2 3 VERSED INDEX
0 000 «<(0)----»2a(0) 000 0
1 001 A1) 100 1
\
2 010 8)<(2)-2:#A(2) 010 2
3 011 '\ A(3) 110 3
/
4 100 £ A(4) 001 4
%
5 101 -==3-Aa(5) 101 5
/ {
6 110 ’ A(6) o011 6
3 7 111 ——m==A(7) 111 7




power indicated in the circle, and each dotted line represents
a simple addition into that element of the array. No ad-
ditional storage is used by this process. The results of each
transformation are stored on top of the original data, and

the last transformation, which is a simple interchange., gives
the desired Fourier transform. Note also that the succession
of numbers in the circles is the bit-reversed representation
of the sequence of indices in order. They can be stored in a
table or generated successively by a reverse-add procedure.

For reasons of space and simplicity, we have chosen the latter

rout~=.

The S matrices are:

1 0 0 0 wo 0 0 0
0 il 0 0 0 w0 0 0
0
0 0 1 0 0 0 W 0
s_= = 0 0 0 ib 0 0 0 P
0= T w
1 0 0 0 w4 0 0 0
4
0 1 0 0 0 w 0 0
0 0 1 0 0 0 w4 0
0 0 0 it 0 0 0 w4
- 10 -
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5. H1GH-SPEED CORRELATIONS AND CONVOLUTIONS

By computing Fourier transforms with this finite Fourier
series-like method an important condition is put on the time
series. As in regular Fourier series the input is assumed to
be periodic with period T and the integrals or sums are com-
puted over a single period. There is also the effect of
cutting off the spectrum at the folding frequency. Sines and
cosines of finite wavelength will repeat again outside the
region of interest. This fact in itself is not bothersome but
becomes a serious complication in the computation ef convo-
lutions and correlations. Convolutions and correlations as
usually computed assume the time series to be zero outside the
region of interest. Therefore, the integrals or sums in com-
puting them are summed out only over the non-zero terms. When
multiplying together two finite Fourier transforms (or the
complex conjugate of one times the other) the periodicity of
the time series means that elements which have been shifted
past the end of a period reappear at the beginning. This
process is called circular convolution or correlation and its
effects are unavoidable when straight forwardly computing lagged

products with finite Fourier transforms. This is illustrated

below:
xl - (3' o' -1' 2)
X2=(—2, 2: "1: 3)
RS = (1, -1, 3, 5) for 100% positive lags;

12 .

for 100% negative lags.

]
—
[
w
W
1
[
g

s 12 =




Circular convolution is therefore written:

T-1
Ricj(t) ” Z x (1) x (€2 1) (23)

7=0
where xm(t + T) = xm(t) for all m .

The proof that this kind of correlation is equal to the
transform of the absolute pProduct of the two finite trans-

forms follows below:

T-1 T-1 T-1
c -tk -tk
Z Rij(t) w Z Z xi('r) xj(t + 1) w (24)
t=0 t=0 7=0
T-1 T-1+171
=Z Z x, () "j(q) wola-T)k q=t+r
=0 q=1
T-1 T-1
n Tk -qgk
—Z Xi(T) w Z xj(q) w
T=0 q=0

*
= A (k) A,(k)
. ]

On the other hand .the transient correlation for posi-

tive lags is defined by the following:

T-1-t
Rz'j(t) =z % (1) x (¢ + 1) (25)
=0

= 3 -




where the upper limit on the sum simulates the desired zeros
in the time series outside the region of interest. This is

illustrated below: ,

X, = (3, 0, -1, 2)
X, = (-2, 2, -1, 3)
sz = (1, 3, -3, 9) for 100% positive lags;

(1L, -4, 6, -4) for 100% negative lags.

The finite Fourier transform of this R? is thus not the
product of the two individual transforms. However, by filling
zeros into the second half of each data series nd computing
their transforms out to twice their actual length, a good esti-
mate of the spectrum may be obtained. In addition, the
negative lags in the correlation appear, thus giving a more

mathematically satisfying result. This is illustrated below:

Xl x (3, 0, ‘lr 2, 0, O, o, 0)
x2 = (-2, 2, -1, 3, 0, 0, O, 0)
Riz = (1, 3, -3, 9, 0, -4, 6, -4) for 100% positive lags.

The two modified transforms thus are:

27-1
F,(k) = E: x,(t) w-tk x,.(t) =0, T <t <2T-1
i i i
t=0
2T-1 2T7-1
_ % s ¥ tk -7k
Sij(k) = Fi(k) Fj(k) x 2 x.l(t) W z xj(f) w
t=0 *=0

- 14 -




2T-1
? _ i ks _
R (s) = }: F. (k) Fo(k) w
k=0
2T7-1 27-1 27-1
LY xe) k() ) K 28)
i j
t=0 r=0 k=0

Now from (22) the 1last sum becomes a Kronecker delta function

and the other sum is collapsed to give:

21-1
? _ B
R(,(s) = 2: x,(€) x, (t+a) = Ry, (s)
t=0

The last equality following from the original assumption that

xi(t) =0, T<t<2r-1 . Transient correlations for 100%

lags are therefore computed by forming the absolute product of
two transforms, each computed out to twice the length of the

original data series with zeros filled into the second halves.

Non-circular or transient convolutions are computed in
much the séme way, except that the transforms have to be com-
puted out to a length equal to the sum of the lengths of the
time series and the filter, with the appropriate number of
zeros filled into each. The convolution theorem is proved irn

the same fashion.

T+S5-1

A(k)=z a(r) w 'K a(r) =0 , S<1<T+s8-1

T=




-

T+S-1
X(k) = E: x(t) w'tk x(t) =0 T<t<T+8§ -]
t=0
Sl | T+S-1 T+S-1 T+S-1
L AKX W= YT () e § oKl
L 1=0 t=0 k=0
T+S-1 T+S-1
z A(k) x(k) Wi o E: a(t) x(u-t) = y(u) (27)
k=0 =0

Where y(u) is now the "filtered" output of the filter a acting
on X. Convolutions are therefore computed by forming the
product of the twc transforms, each computed out to a length
equal to their sum with zeros filled into the extr. .engths.
Detailed procedures for these comnutations are listed in

Appendix A.

- 16 -
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APPENDIX A - PROCEDURES

FINITE FOURIER TRANSFORM THEORY AND ITS APPLICATIGN TO THE
COMPUTATION OF CONVOLUTIONS, CORRELATIONS, AND SPECTRA

Fromp—




—1#5

PROCEDU'RE FOR CALCULATING AN AUTO-SPECTRUM AND AN AUTO-

CURRELAT ION

1)

2)

J)

4)

5)

DIMENSION X(2*LX+2), CX{LX+1)
PQUIVALENCE (X,CX)
TYPE COMPLEX CX, CONJG
LX = 204N
Erase 2*LX+2 points in X: the extra complex point il.needed
by COOLER to return the point at the folding frequency.
hcad the data channel into X(1) through X(LX).

CALL COOLER(N+),CX). The Fourler transform of X and the
necessary zeros on the end of the data is now stored in
CX, LX+1 complex points long, representing frequehcies
between DC and the folding Frequency.

Go through the LX+1 complex points in CX, and:
CX(1) = FcoNaG(cx(I))*cx (1) )/LX

that is,
Re[CX(1) 1 = (Refcx(1)1? + mmicx(1) 1) /1x
ImfcX{(1)] = 0.0

The auto-spectrum is the real part of CX, purely real

and LX+1 points in length.

To get the auto-correlation, fill in the other LX-1
complex points in CX as required by COOL for inverse
transforms, and call COOL: '
bo 1l 1 = },LX-1
I CX(LX+141) = CX{LX-1+1)
CALL COOL{N+1,CX,+1.0)

The auto-correlation is in the real part of CX, purely real

and 2*LX points in length.

NOTE: CX must be dimensioned 2*LX if the auto-correlation

is to be computed.

_A_l-




PROCEDURE FOR CALCULATING A CROSS SPECTRUM AND A CROSS-CORRELATION

3
3
i
3
£
I
3
b

DIMENSION X(2*LX+2), CX(LX+1), Y(2*LX+2). CY(LX+1}
PQUIVALENCE (X,cX), (Y.CY)

//
TYPE COMPLEX CX,CY
LX = 2%*N
1) Erase 2*LX+2 points .n both X and Y.
- 2) Read channel ! into X and channel 2 into Y.
3) CALL COOLER(N+1,X)
CALL COOLER(N+1,Y)
4) Go through the LX+1 complex points and overlay CX (or cY)
witht
cx(1) = [coNgG(cX(I))*CY(I)]/LX
that is .
. Re[CX(I)] = (Re[CX(I)]*Re(CY(I)}+Im[cX(1)*Im[CY(I)])/LX

Imfcx(1)] = (Re[cx (1) *Im{c¥(I)]1-Im[CX(I)I*Re[CY(I)])/LX

The cross-spectrum between channel 1 and channel 2 (which
is the complex conjugate. of the cross-spectrum between
channel 2 and channel 1) is now invCX. 1LX+1 points in
length. The co-spectrum is in the real part of CX and the
quad-spectrum is in the imaginary part of éx.

5) To get the cross-correlation, £i11 in the other LX-1 points
in CX and call COOL:

pol1=1,IxX-1
1 CX(LX+I+1) = CONSG(CX(LX-I+1))

CALL COOL(N+1,CX,+1.0)
The cross-correlation is in the real part of CX, purely

real and 2*LX points in length.

NOTE: CX must be dimensioned 2*LX if the cross-correlation
is to be calculated.

- A=~2 -

it




PROCEDURE FOR_CALCULATING THE CONVOLUTION OF TWO SERIES

1)

2)

3)

4)

DIMENSION X{L+2), cX(ML+1), F(L+2), CF(%L+1)
EQUIVALENCE (x,cx), (F,cF\
TYPE COMPLEX CX,CF,CONJG
L = 2%%N

L here is the next power of 2 larger than LX+LP,,the combi:ed

length of the data and the filter.
Erase L+2 points in X and F.

Read the data into X(1) through X(LX) and the filter impulse
response into F(1) through F(LF).

CALL COOLER(N,CX)
CALL COOLER(N,CF)

Co through the 'ii#1 complex points in CX, and:
CX{1) = Tex(x)*cr(1) I/LX
that is,
Re(CX(I)] = (Refcx(l)l'kelcr(l)l-Imrcx(I)1*Imfcr(l)])/bx
ImfCX(I)] = (RelCX(I) |*ImlCF (1) J+RelCF (1) " ImlCX (1) ))/1X
The Fourler *ransformof X convolved with P i®s now in cx.

Fill in the re-t of the points in CX as needed by cooL,
and transform back. Note again that if the actual convo-
lution is desired instead of the Fourier transform, CX

must be dimensioned L.
DOV T =1, YN.-1
Poex(u+i41) = conaGlex(, -141) )
CALL COOL(N.CX,-1.0)

The convalation of X with F is now in the real part of CX,

purely real, and ILX‘LF-1 points in length,

- A= -

2"




APPENDIX B - PROGRAM LISTINGS

o

FINITE FOURIER TRANSFORM THEORY AND ITS APPLICATION TO THE
COMPUTATION OF CONVOLUTIONS, CORRELATIONS, AND SPECTRA




A AR, s

JUBROUTINE CUOLIN,X»SIGNI)
HYPER~RAPID PUURIFR TRANSFUKRM USING COOLEY=-TUKEY ALGOR]THM

SEISMIC DATA LABORATOHY, ALEXANDRIA, VA, PROGRAMMED
26 FBURUARY 1Y66 RY Jeo F, CLAERBOUT (MIT), D, W, MGCOWAN,
Es Ao FLINN, AND Ji GIBSON (TELEDYNE)

X IS A COMPLEX ARRAY USED FUOR THE DATA SERIES AND THE

N
TRANSFORM « THE NUMBER OF ELEMENTS OF X IS L = 2 ,
SIGN ® <«1,0 FUR DIRECT t OURIER TRANSFORM AND ¢1,0 FOR INVERSE
FOURIER TRANSPORM (BUT SEE BELOW FOR ARRANGEZMENT OF DATA FOR
INVERSE TRANSFOQRM),

FOR DIRECT TRANSFORM, ON INPUT THE REAL PART OF X GONTAINS THE
DATA SERIES AND THE I[MAGINARY PART OF X 18 ZERO, 6N RETURN,
THE FUURIER CUSINE SERIES EXPANS]ON OF THE DATA IS IN THE REAL
PART UF X, ANU THE FOURIER SINE SERIES EXPANSION I8 IN THE

Nei
IMAGINARY PART OF X, EACH CONTAINS ONLY ¢ ¢ 1 NONREDUNDANT
POINTS, THE COSINE EXPANSION I8 SYMMETRIC ABOUT POINT NUMBER

Neg
2 ¢ 4 AND THE SING TRANSFORM 1S ANTISYMMETRIC ABOUT
THIS POINT,

FOR BEXAMPLE ™ N ® 3 AND DATA ® (00510003 ,50000020000,00v),
THEN REAL PART OF X 8 (J0031¢90400000403¢000004) AND IMAGINARY
PART OF X s (0,,0,00020000020000,00,) ON INPUT,

ON RETURN, REAL PART OF X 8 (1,000,07074,04,947071¢4~1,000»
«y707350,0007071) AND IMAGINARY PART OF X & (0,,>,8071,
©140000%,707120,0,7071,1,000,¢7071)¢ POINT NUMBER 1
CORRESPONDS TU ZERO FREQUENCY, POINT NUMBER 5 CORRESPONDS

T0 Pl, THE FOLDING FREQUENCY,

TO DO AN INYERSE TRANSFORM, THE COSINE AND SINE SERIES MUST BE

Nel
FOLDED OVER AVQUT POJNT NUMBER 2 ¢+ 1 BEFORE CALLING
COOL WITH SIGN = 41,0, SUBROUTINE FTPACK CAN BE USED TO Do
THIS FOR YOUs CONVERTING AMPLITUDE AND PHASE BACK TO
SINE AND CUSING IF NEED BE,

L

*N
THERE IS A SCUALE FACTYOR OF 2 WHICH COOL DGES NOT APPLY,

THE USER CAN ApPLY THE SCALE FACTOR EITHER TO THE DIRECT OR TO

= =N/2
THE INVERSE TMANSFORM» OR APPLY A SCALE FACTOR OF 2 T0

s et Y R N s K K e Kt K Ko Ny Kz K s K s Ko 2 >y s s N - Ny e ey N - e N e Ko Ko R By K K Rt R R 2 R R K2 Rl K K2 K2 K2 )
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FOR EXAMPLE, WIVEN THE INPUT UATA AS AHOVE, THE TWQ BYATEMENTS
CALL COOL(3eXrel,0)

CALL COOL(3sXsel,0) .

WOULD CHANGE HKEA, PART OF X 710 €0008000050¢00000000.00¢) AND
IMAGINARY PART OF X TO €0000,000000s04004006500¢),

DIMENSION x(1)sINY(16),6(2)
TYPE COMPLEX XoUQo4,HOLD
EQUIVALGNCE (GoW)

INITIALIZE

LX 8 2e@N
Pl2wb6,283185300

FLX = X ‘
FLXPI2nSIGNI*PLR2/FLX
DO 10 Jei,N

INTC1) & 20e(N*])

LOOP UVER N LAYERS

DO 40 LAYER ® 1,N
NBLOCK 8 2ee(LAYBR1)
LBLOCK=LX/NBLQCK
LBHALF s LpLOCK/2

START SERIGS AND LOOP OVEH BLUCKS [N EACH LAYER

NW = 0
DO 40 ]BLOCK®1,NBLOCK
LSTART s LBLOOK*(]BLOCK®1)

COMPUTE W » CEXP(2,#PloNW*SIGN]/LX)

-

ARGRFLOATF (NW)*FLXP[2 b
G(1) = COSF(ARG)
@(2) = SINFIARG)

THIS CAN BE SPEEDED UP BY USING A TABLE OF COSINES

COMPUIE ELEMENTS FOR BOTH WALFS OF EACH BLOCK

DO 20 J=1,({BHALF
J 8 J+LSTARY

K s JoLBHALF

Q= X(K)*W

X(K) ®» X{J)=Q
X(J) » X(J)eQ
CONTINUE

BUMP UP SERIES BY TwO (NOT ONE)
00 32 1w2,N

I GEEL - —
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30
32

40

60

55

70
80
50

1 =1
LL=INTCL) o AND,NW

THIS LOGICAL UPERATION IS A MASK TO DETECT A ONE 1N
TRE APPROPRIAIE BIT POSITION OF NW, THIS STATEMENT WILL NOT
WORK UN [BM FURTRAN SYSIEMS,

IFCLLY32,31,30
CONTINUE
NW = NWeINT(])
CONTINUE
CONTINUE
N = NWeINTC(I])
CONTINUE

START SERIES 10 BEGIN FINAL REPLACEMENT

NW = 0
00 5V K=sl,X

CHOOSE CORRECT [NDEX ANU SWITCH ELEMENTS [F NOT ALREADY
SWITCHED

NWisNWel
IF(NW1=K)55,58,6U
HOLD®X(NW1}
X(NW1l)sX{K)

X{K) = HOLD
CONTINUE

BUMP UP SERIES BY ONE

00 70 I=1,N -
11|
LLEINTCI) ,AND (NW
IF(LL)B0,80,70
NW = NWeINT(1) N
NN = NWSINTC(I]) i
CONT INUE

RETURN

END
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SUHROUTINE CUGLUUNCINT,1O0TsLab sX)
DIMENSION F(1)0oX82,1),AB(12/)

DIMENSTUN FON,L)ox(2,ITEST),LAB(127)

MULTICHANNEL CONVOLUTION ROUTINE FQR LAPED GATA

INT 15 THE INPYT SUBSET TAPE OF DATA CHANNELS Ty
10T IS THE OUTPUT SUBSE! TAPE OF DATA CHANNELS ’ '
L IS THE NUMHER OF FILTER PUINTS FOR EACH CHANNEL

F IS THE FILIER MATRJX

X IS A WORKING ARRAY UONTAINING AT LEAST 291TEST PQINTS
ITEST 1S THE NEXT POWER OF T1WO LARGER THAN LX+L

DeW,MCCOWAN JULY 1968 "

OO0 OO0

REWIND [NT
REWIND JOT
READCINTILAB
NsLAB(2)
LXRLABCS)
ISUMSL X +L
LAB(S)s  X=(| 1)
WRITECIOT)LAB
U0 1 IND=i,13
ITESI=2e*ND
IFCISUM=ITEST)2,2,1
2 NCOOLsINV
60 10 3
1 CONTINUE
PRINT 10V0,LX,0L
1000 FORMAT(59H1BAD NEWS, ERARUR IN CQOLCON, DATA PLUS FILTYER TGO LONG L
1Xs ,]0,5M, L= ,j0)
SYOP
3 CONTINUE
ITO28 [ TEST/2
1TO2P2s]1T70242
DO 10 INsi,N
CALL ERASE(2+]TEST,X)
READ(lNl’(x(l.H)-Nu1.LX)
00 11 IL=1,
11 X42,1L)3F CIN*LIL="L) *N)
CALL COOLINCOOL X =1,9)
X(l,1)sX(1,4)eXC2,1)/7]TEST
X(2,1)20,0
Do 20 1L=2,}T02
SAVEI(xtlaITESIilLQZ)'x(E.lThst-lLOZ)oxtlolL)thZ-IL))IGZ'ITEST)
X(ZalL)l(X(iaITEST-ILozbttZ-x(Z.ITEST-lLOZ)"Z-XCIalL)*'Z#X(Z.IL)'
1%2)/7C4= ] 1EST)
20 X(1,I1L)=SAYE .
X(1,1T02+2)mX(1,1T0242)0X¢2:4TVU2¢1)/1TEST
X(2,17T02%1)00,0 .
00 30 ILs])Y02P2,ITEST
X(1,1L)X(1,1TESIeL+2)
30 Xe2,IL)m=X(2,[TEST-]L¢2}
CALL COOL(NCOQLsX,+1,0)

10 WRITECIOI) (XC1oMI, ML, LX)
END FILE 10T
HEWIND JUT
REWIND INT
RETURN
END




SUBROUTINE COQLEN(N,X)
DIMENSION x(2e¢L¢2)

FOURIER TRANSFQORM OF A REAL DATA SERJES
N MUST BE LESS THAN OR EQUAL TO 14

»
OO0

UJMENSION ¥ (2,1)
M 8 Nej
L & 2eaM
CALL COOLtM,X,"2,40)
F s 3,141592053/7F0ATF(L)
SAVE=)(L1)
X{1)mx¢d)rex(2)
X{1,Let)uSAVEeX(2)
X(2,1)aX(2,L¢1)80,0
LLegr2
00 1V J=2,.L
v 8 Le]e2
AluQ,Da(X(g,1)ex08,0))
A28, 3%(X(2,1)=X2,J))
Qim0 IetoXtlr )N L, 4))
W220,5%(=X(2,]1)"X(2,4))
1] = =1 - .
F1 = Fell
G1sCOSF(FY)
@2seSNF(F1)
SAVEsH1
81=81c31-082¢6G2
B23B2+G1+SAVEG2
X(1,1)mAd=p2
2(2,]1)3A2¢8,;
X{1,J; AleB2

10 X(2,J)u"A2481
Xt(2,LL*1)ma)x(2,LLe1)
RETURN .
END v




SUBROUT INE CUQLHLBR(N, X)

THIS COMPUTES TKE HILWERT TRANSFORM OF A DAYA SERIES,
USING THE WYPRR=RAPID FOUKIER [RANSFORM ROUTINE COOL
THIS PROGRAM T1MANKS TU JON CLAERBOUT

INPUTS o

N s LUG (BASE 3) OF NUMHBEH JF DATA POINTS
REAL (X) DATA SERIES 70 BE TRANSFORMED
[MAGY¢X) 3 ¢

QUTPUIS =
REAL (X)
IHAGEX)

X AGAIN
WILBERT TRANSFOHM OF X

THIS CALLS COUL

00O COO0000O0O0O00OO0

DIMENSION Xx(1)
TYPE COMPLEX X
CALL COOL(IN,X,=140)
M = 2esN
M1 3 M/2+2
DO 1 IsMi,M

1 X(1) 8 (0,,0¢)
X(1) = ¢5%x(1)
X(Mi=1) 3 Se)X(Mlel)
CALL COOL(N.X,*1.0)
RETURN
END
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SUHROUTINE COOLIWQ(N,X,SIGN;A,¥)

THIS USES COO0L TO COMPUTE THE FOURIER TRANSFORM OF TWO
TIME SER[ES AT ONCE

INPUTS =

N LOG (BASE 2) OF NUHBER OF DATA PGINTS

X A COMPLEX ARRAY OF DATA, THE FIRST TIME SERIES IS STIRED
IN THE RBAL PART OF X» AND THE SECOMD [S STORED IN 'ME
IMAGINARY PART OF Xo IN UTHER WORLS, THE TWO SERIES ARE |
MULTIPLEXED IN THE ARWAY X,

SIGN = =1,0 POR DIRECT TRANSF. M, THIS SUBROUTINE
HAS NOY BEEN CHECKEU- QUT FOR TWO INVERSE TRANSFORNS
AT UNCE.,

@
QUTPUIS =
A COMPLEX FOURIER TRANSFURM OF THE FIRST DATA SERIES,
leEes THE ONE STORED IN THE REAL PART OF X
8 FOURIBR TRANSFORM OF THE SECOND DATA SERIES, L.E,s THE
ONE STOREOQ IN THE IMAGINARY PART OF X,
BOTH TRANSFORMS ARE OF LENGTH 2##(N=1) ¢ 1 (SEE COOL WRITEUP)

DIMENSION Xx(1),At3),8(1)

TYPE COMPLEX X»A»8,CONJUG

CALL COOLIN,X,SIuN)

A(l) = oI (X(L)eCONUGIXNILD))
B(1) 8 (U,,oB5)*(X(12=CONJGE(X(L)))
Mme2e e\

DO 10 Ked, M

A(K)IBO ¢ X(K)*CUNJGIX(M®2=K)))
BUKIR(O, U, «04SIN(XN{K)=CONJGELRA(MOLeK,))
RETURN

END
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SUBROUTINE COOLVU, VILX,XaLP ,F)
UIMENSION F(1j,X42,1)
SINGLE=CHANNEL CONVOLUTION USING COOL

THIS TAKES FOURIER TRANSFURM UF DAYA AND FiLTER, MULTIPLIES
THEM 10GETHENs AND YRAWSFURMS BACK,

INPUTS

LX LENGIN OF DATA
LF LENGIN OF FlcTER
4 PILTER COEFFICIENTS UIMENSIONED F(LF) IN CALLING PGM
X DATA, DIMENSIONELU X(N) [N CALL,NG PGM, WNERE
N IS THE SMALLEST NUMBER WHICH IS 4 POWER OF 2 EXCEEDING
(LheLX)e2

THE SUBRQUTINE RETURNS X CONVOLVED WITW =, OF LENGTM
LPeLX~1s» STYORED CLOSE~PACKED IN X,

23 SEPIEMBER 1966 UWMCC

CHECK LENGTH RESTRICTION

NXSLFeLX

DO 10 [s1,13
Ns2wewn]

IF (NX=N) 20,20,V
CONT INUE

ERROR RETURN = LENGTH OF FJLTERED RECJRD WOULD EXCEED LIMITY

Lise_F
RETURN

NCOOL s
ERASE WORKING SPA%E N X

CALL ERASE(2%.)=LX,X(|X¢3))
MULTIPLEX DATA AND FILTER IN X

DO 30 Isi,. X
JalX=]el

X(1,J) s X{J)
DO 35 Imli,x
X(2,1) = 0,9
DO 40 Is1,LF
X(2,1) & Fi])

TRANSFORM AND FIDDLE
FNaN

CALL COUL(NCOOLsX,=1,0)
X€1,1) = X(4,4)2X(2,1)/FN



]
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Xt2,1) = 0,0
N2uN/2
00 50 1Lw#2,N2
T = (X(loNolLoz’°X¢2.N-IL°29*X(10lL)'K(ZalL)’/(2.'FN)
Xt2,1L) -¢x(ioN'lL+2)“2-x(aoN'lLoztM2-X¢1.lL)n2+x(2.[uu2u
1 (4,9%FN)
X(1,iL) =)
xc1.N2+1)-x(1.N2*ntx¢2.N2*1’NN
l(20N201,'000
N223N2¢2
DO 60 IL®N22,N
X(1,IL)8X(1,NelL*+2}
X(2,IL)® =x(2,N=]|+2)

TRANSFORM BACK
CALL COOL(NCOOL,X,+1,0)
GLOSE<PACK FILTERED DATA IN x
00 70 1wl Nx
XCI) = XGg, 1)

RETURN
anNv




SUBROUT INE FTQUCUVOL(X,NsM,SJUNY)
DIMENSTION XN, M)
TYPE COMPLEX X

c
% c 2 DIMENSION FUURIER TRANSE OKM USING COOL
¢

NCOOL'LOUF(FLOA'le))/LOHF(Z.O’OI.UE‘Q
"CUOL'LO“F(FLO"ECH’)/LOGF(?.ODOI.DE'Q
SCALENlloOISQRTFl'LOATF(N)D
SCAL&HlloOISORTF(PLOATFjH))
00 1 [Msi,M
CALL COOL (NCOOL. X¢1o1M)»SIGNIL)
DO L INmsi,N
1 X(lNolH"XC]N.IH’OSGALEN
CALL MATRAGI(XsoNo M, X)
D0 2 INsi,N
INDEXSLo([Nel)on
CALL COOL(HOOOLoX(lNDEXal):SIGNI’
CALL SCALE(SCALEM,M,X(INDEX,1))
2 CONTINUE
CALL MATRAGI(XoMoN,X)
RETUA4N
BND
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SUBROUTINE FTIDCUOL(XaNoMsL,SIGN])
DIMENSION X(NoMoli)
TYPE COMPLEX X

3 DIMENSION FOURIER TRANSFORM USING COOL

LCOOL=LOGF (FLOATF (L?)/LOGF(2:0)¢1,0E%6
SCALEL=1,0/SQARTF(PLOATF (L))

D0 1 ILs=l,L

CALL FT2UCOO0L(X(2,1s1L)aN,M,SIGNI)
CONTINUE

CALL MATRAG3I(XsN*M,L,X)

00 2 INs3,N

DO 2 IMsi,M
INDEX3L1o(INwl)*|®(IMal) ¥ *N

CALL COOL(LCCOLsX¢INDEXs1,1)»SIGN})
CALL SCALE(SCALEBL,L,XCINDEX,1,1))
CONTINUE

CALL MATRAG3I(XsLoaN®M,X)

RETURN

END




QaGa

10

30

40

50

60
100

SUBROUTINE MATHAOJ(A,N,M.8B)
UDIMENSTION A(2,1):8(2,1)

MATRIX TRANSPUSE ON CUMPLEX ARRAYS

MASK1200UQ000000VVQO001B
MASKZ377/7727277777776B
NMENwM

00 10 1=21,NM
B‘lll,aA(ipl,QUR."ASKl
(2, 1)=A02,])

Jra(

ASSIGN 3V 70 KSHWH

DO 100 J=1,NM

GO TU KS®H,(30.90)
JFeJh +1

LL=Bt1,JF) ,ANDeMASK]
IFCLL)30-30,4Q

JOaJF =1

ASSIGN 50U TO HSwWH
TEMPHL1=B (1, JF)
TEMPBZ22B(2,JF)
J12JO/N*XMODF ¢JUAN) "My
TEMPAL=B(1,J1)
TEMPAZ=2B(2,J1)
d(1,J1)2TEMPEY,AND ,MASK2
H(2,J1)STEMPBQ
TEMPUHlIsTEMPAL
TEMPB2=TEMPAZ

JozEJle-l
JFCJ1=UF ) 60,060,100
ASSIGN 3U TO KSwH
CONTINUE

RETURN

eND
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SUBRUOUTINE SPECINUMEIT,JToKTaXsLoLF,$)
DIMENSION x(2,1),8(2,1)

ODIMENSION X(2,NoN JLF)sX1Zs/'4LX42),5(2,LF)

SPECTRAL MATRIX FOR TAPED DATA

DATA MUST BE A POWER OF TWO [N LENGTH AND ON TAPE LT IN

FORMAT, SPEGCTRAL MATRIX I8 RETURNED AS A F63 COMPLEX MATR]X

IN Xy

[1-INPUT SybSEY TAPE

JT=-SCRATCK

KT-SCRATGH

X=WORKING ARRAY AND RETURNED SPECTRAL MATRIX
L~NUMBER OF TIMES TO SMOOTH

LF-RETURNED LENGTH OF S ECTRAL ESTIMATES
S=WORKING ARRAY

PROGHAM TOO CUMPLICATED TU DESGRIBE,.

REWIND T
RedIND JIT

REWIND KT
READCITILOSTANsLX
LX2m2eL X

NCOOL3LOGF (FLOATF (LX))Z/LOGF (2,U)*140kwb
NSQaNepN

LFsLX/2e% 4]

LX2P23LX2¢2

LX4zsdeL X

LX2P2T7282+ X2M2

LXPisL X+l

LX2P3z X¢2+3

1DC=y

LFZm2eLF
WRITE(JUTILOST,NsLX2P2
WRITE(KTILOST,NsLX2P?

00 10 INS®i,N

CALL ERASE(LX4,X)?
READCITI(X(1sM)sNal, X)
CALL COOL‘NCOOL‘I.X"’..O)
WRITEGUTI(XIM), M4, x2P2)
WRITE(KT)(X(M) M=1,| x2P2)
CONTINUE

END FILE JTY

ENU FILE KT

REWIND T

REW{ND JT

REWIND KI

DO 1 INsi,N

INDs N+

CALL SKJPREC(IN.KT)
READ(KT)I(X(M) ,M31,_XPP2)
CALL VOTEM(XsXoLARL,X(LXZPS))




60

26

28
27
2%

CALL SMOUTH(X(LXZP3),LXP1,L)

CALL DISCOICIDCLL, X1 X2PS),LF2)
IDC=s1DC+y

DO 6U UN=IND.N
READ(KT) (X(M)  MSLY2P3,LX2PLT2)

CALL DOTEMEXpXULXQPIY,LUXPL,X(LX2P3))

CALL SMOOTHUX(LXZPI),LXPL,L)

CALL DISU63CIDC, L X(LX2P3),LF2)
IptaiDC+y

CONT INUE

REWIND KT

ISAVESKT

KTaJ?y

JTW]ISAVE

CONTINUE

IDC=y

U0 25 IN=3,N
INDsINeY

CALL DISC63(IDC,V,S,LF2)
IDC=1DC*+Y
INDEXSIN®([N=1) 2N

00 26 JL=1,LF

X¢1, INDEX)=S(Ls L)
X(2, INDEX)=S(2,1L)
INDEX2INUEX+NSU
CONTINUE

DO 27/ JUNSINDsN

CALL DISC63(IDCsU,S,1.F2)
IDCalpCey

INDEXLIsIN® (JNel)*N
INDEX23JNe( [Nml)*pN
Do 26 1Ls1,LF

X(1, INDEX1)sS(1,1L)
X(2, INDEX1)sS(2, 1)
X(1, INDEX2)sS(1,iL)
X(2, INDEX2)s»§(2s]L)
INDEX1~INDEXLIONSUY
INDEX2x JNDEX2¢NSU
CONTINUE

CONTINUE

CONTINUE

RETURN

END




aaon

SUBRUUT | NE SMOQUIHIX, LENGTH, L)
THI'Y HANNING HQUTINE THANKS TO J CLAERBOUT

DIMENSION X(2,LENGTH;
LEELENGTH

LFM1sLF=1

LO 1 L=,
l(1.1)80o5tX(1n1’i0.5iX(1p2)

1(2.1)-0,0
X(1.LFFIU.S'X(1:Lr)00.5*X¢1.LF'1)
X(2,LF)=0,0

IND=g

D0 2 JLBs,LFML.2
x«z;aL)-u.QS*xtznaLal)oo.S*xta.JL)00.25-x12.4L01)
X(anL)lO.25'XGIOJL-1)+095'X(1nJL)*0.25*X€1.JL*1)
XC1, IND)=X (s yL)

X(2,IND)SX(2,4L)

INDs [NDe1

CONTINUE

KC1, INDYsx(1,LF)

X(2, IND)aX(24F)

LFsLF/2¢}

LFMiaFwl

CONTINUE

RETURN

éND

SUBROUT INE DOTEM(X,Y,L,2)
DIMENSION X(2,L0e522,L0,2¢2,L)

D0 1 JL=1,
savsn-xtl.tL)'v¢1,lL)oxcz.lL'*Y¢2.lL)
SAVEI'X(in[L)"‘aolL)'X‘?nIL"Y(1nIL’
(L, IL)®SAVER

- Lt2. JL)SAVE]

RLTURN
ENV
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SUBROUTINE DISUOSIIBLOCKS ISWITCHLX,N)
DIMENSION %(N)

THIS IS THE SUL DISC URIVER RUUTINE WRITTEN [N CODAPei
IT TRANSFERS WQRDS BETWEEN CORE AND THE DISC
IBLOCK 1S THE DPISC BLOCK (32 WORDS) ADDRESS
ISWITCH CONTRULS READING AND WRITING
ISWITQHSV  GIVES A READ FROM THE DJSC
ISWITOH=1 GIVES A WRITE ON THE DISC
X IS THE CORE ADDRESS
N IS THE NUMHER OF WORDS 10 TRANSFER

i"'t""'tt."tt'.""t.'.ti't"'i'.'&'*""t"t""t'i"t'iit"i'tt'.

THIS ROUTINE MUST BE SUPPLIED BY THE USER OR INCLUDED IN BINARY

"Qit.t't't't'it.""'.t.t"."i"ii'.'.'t.t'fﬁtt*itt"tt'.tt't"'tt't'

RETURN
END

SUBRCUTINE ERASE(N,X)
DIMENSION X (N)

ERASE N WORDS N X

D0 1 Is1sN
X(1)=0,0
RETURN

&Nb

SUBROUTINE SKIPREQ(N, ITAPE)
SKIP N LOGJCAL REZORDS UN TAPE ITAPE

DO 1 I=1,N
READCITAPE)LOST
RETURN

END




APPENDIX C - PROGRAM WRITE-UPS
FINITE FOURIER TRANSFORM THEORY AND ITS APPLICATION TO THE

COMPUTATION OF CONVOLUTIONS, CORRELATIONS, AND SPECTRA




SEISMIC DATA LABORATORY
ALEXANDRIA,VIRGINIA

DIGITA’, COMPUTING SECTION

IDENLIFICATION

Title: Hyper-Rapid Specialized Cooley-Tukey Fourier Trans-
form (direct only)

COOP Identification: G612-COOL

Category: Fourier Transform

Programers: J. F. Claerbout, D. W. McCowan, J. L. Gibson,
and E. A. Flinn

Date: 26 February 1566
PURPOSE

To compute the Fourier series expansion of a real-or
complex-valued data series, or the data series from the
complex-valued Fourier series exypansion.
USAGE

1. Operational Procedure and Parameters:

This is a CODAP subroutine with a FORTRAN-63
calling sequence CALL COOL (N, X, SIGN). X is a com-
plex array used for the data series and the transform;
the number of elements of X is L = 2N; SIGN = 1.0 for
a direct lourier transform, and +1.0 for an inverse
Fourier transform (but see below for arrangemen: of
data). i

For the direct transform: on input the real part

= o=} =



is zero. oOn return, the Fourier cosine series expansion
is in the real part of X, and the Fourier sine series
expansion is in the imaginary part of X. Each contians

only 281

+ 1 nonredundant points; the cosine expansion
is symmetric about point number 2N-1 + 1 and the sine
transform is antisymmetric about this point.

For example: N = 3 and data = (0a, Nij; 0., 0., 0.,
0., 0., 0.); Re(X) = (0., 1., o., o., 0., 0., 0., 0.);
Im(x) = (0., 0., 0., o., Oz 0ap Ok ; 0.) On imput. oOn
return, Re(X) = (1.000, .7071, 0., =.7071, -1.000, -.7071,
0., .7071); 1Im(x) = (0., -.7071, -1.000, -.7071, 0.,
.7071, 1.000, «7071). Point number 1 corresponds to zero
frequency; point number 5 corresponds to 7.

For inverse transform: the cosine and sine series
mus; be folded over about point number 2N-1 + 1 before
calling COOL with SIGN = +1,0.

There is a scale factor of 2~V which COOL does not
apply. The user can choose to apply the scale factor
either to the direct or to the inverse transform, or to
apply a factcr of 2-N/2 to both. For example, if COOL
were called with the transform example above, the result

would be Re (X) = (0., 8., 0., 0., 0., 0., 0.) and

Im(X) = (Oo' 0., 0., 0., 0., 0., 0., o-)-

- C=2 -




3.

11.

12.

135

14.

Space Recquired: Approximately 20010 exclusive >f X.

The largest ceries that can be transformed in a 32K
core machine is BK.

Temporary Storage Required: None. Other versions of
this program have an auxiliary storage for the cosine
table and/or a table of hit-reversed numbers. COOL
computes its sines and cosines as it goes, and uses an
algorithm due to J. F. Claerbout for calculating the
bit-reversed numbers.

Printout: None.

Error Printouts: None.

Error Stops: None.

Input ard Output Tape Mountings: Not Applicable

Input and Output Formats: Not Applicable.

Selective Jumps and Stops: None.

Timing: Time is proportional to N'2N. Transforming
8192 on the CDC 16/14-B requires 25.0 seccnds.
Accuracy: Calling COOL returns the original to about
nine decimal places.

Cautions to User: See Operational Procedure above.

Configuration: Standard COOP.

References: J. W. Cooley, 1964 "Harm - Harmonic Analy-
sis; Calculation of Complex Fourier Series": IBM Watson

Research Center Yorktown Height, New York.

VS




J. W. Cocley and J. W. Tukey, 1965, An Algorithm for
the Machine Calculation of Complex Fourier Series:

Math. of Comp., Vol. 19, pp. 237-301.

Writeups of the following SDL programs:

COOLTWO: Does two Fourier transforms at once.

FT3DCOOL: Three-dimensional Fourier transform

METHOD
Given a time series X(I), 1, L (where L = 2N) assumed
to be periodic outside the given range, COOL constructs
N-1

Y(K) = SUM x(3)*W 1 K=0, L-1
3=0

where W = exp (-2ni/L) for time-frequency transform, and
W = exp (+2mi/L) for frequency-time transform. The algo-
rithm is efficient, requiring N'ZN multiplications rather

than 22V,

- C-4 -
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SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

DIGITAL COMPUTING SECTTION

IDENTIFICATION

Title: Multichannel convolution in the frequency domain,
for taped data.

COOP Identification: UES G620 COOLCON

Category: G6 Time Series Analysis
Programer: D. W. McCowan
Date: 22 September 1966
PUKPOSE

This subroutine convolves data channels on the input
subset tape with a multichannel filter stored in core,
working entirely in the frequency domain. The result is
written in subset format on ancther tape.
USAGE

1. Operational Prccedure: This is a FORTRAN-63 subroutine

with calling sequence:
CALL COOLCON (INT, IOT, L, F, X).

2. Parameters:

INT is the number of the input tape unit.
IOT is the number of the output tape unit.
L is the number of gfoints in the filter (see restriction

below) .




T

10.

11.

i
E;

F is the multichannel filter, dimeinsioned F(N,L) in the
calling program, where N is the number of channels on the
input subset tape.

X is a working array, dimensioned X(2,IT) is the calling
program, where IT is the least power of 2 such that

21T o 1+ 1x

where LX is the number of data points in the input
channels.
Restriction on length of data and length of filter:

LX + L must not be greater than 213 (8K) .
Space Required: Very little in addition to arrays.
Temporary Storage Required: Z*ZIT working space, plus

12710 for the subset tape label.

Printout: None.

Exror Printouts: If L+LX>213, these numbers are printed
w}th an error message.

Error Stops: If L+LX>213, the subroutine stops the

calling program.
Input and Output Tape Mountings: See Parameters above.
Input and OQutput Formats: Compatible with UES Subset

(See Writeup).

Selective Jump and Stop Settings: None.

Timing: Dominated by two Fourier transforms using COOL

- C-6 -
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for each channel to be filtered. The length of trans-
. IT . -
form is 2 (See Writeup of CcoCL) .
12, Accuracy: This yields the same numbers, to ten decimal
places, which would be computed by convolving the

filter and data series in the usual way.

13. Cautions to User: None.

14, Contiquration: Standard CcooP,

15. References: Writeups of UES G612 COOL, UES 224 SUBSET,
and UES G617 COOLER.
METHOD
For each channel to be filtered, the subroutine erases
2IT+1 locations of X, and multiplexes the filter and the
data cﬂannel in X, starting at the beginning. Note that as
far as COOL is concerned, X is a complex ariay with data in
the real part and filter in the imaginary part. CO&L is
called, and the logic of COOLER (q.v.) is used to form the
Fourier transform of the filtered channel in X. COOL is
called again to get back to the time domain, and the filter-
ed channel is written on the output tape.

The subset label is copied from the input tape to the

output tape at the beginning of the subroutine.
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SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

DIGITAL COMPUTING SECTION

IDENTIFICAT ION

Title: Hyper-Rapid Specialized Cooley~-Tukey Fourier Trans-
form (direct only)

COOP Identification: G617-COOLER
Category: Fourier Transform
Programer: J. F. Claerbout

Date: 27 July 1966

PURPOSE
To compute the Fourier series expansion of a real-valued

time sefles.

USAGE

Irs Operational Procedure: This is a FORTRAN-63 subroutine,
with calling sequence CALL COOLER(N,X). This subroutine
calls COOL.

2. Parameters: On input, X is a real-valued time series
containirg LX points, where LX = ZN, N is restricted
to be 14 or less. On return, X contains ¥LX+1 complex
points of the Fourier transform of the data, with the
real and imaginary parts multiplexed together -~ i. e.,
on return X can be thought of as a complex array, with

the cosine transform in the real part and the sine




transform in the imaginary part.

X must be dimensioned at least LX+2 in the

calling program. (i.e.. X%ILX+1l complex points)

3. Space Required: Very little.

4. Temporary Storage Required: None.

5. Printout: None.

6. Error Printouts: None.

7. Error Stops: None.
8. Input and Output Tape Mountings: Not Applicable.
9. Input and Output Fcrmats: None.

10. Selective Jumps and Stops: None.

5 Timing: Time is proportional to N,ZN: transforming
: 16384 points on the CDC 1604-B requires 45.9 seconds.
12 Accuracy: About nine decimal places.

13. Cautions to User: On return, the real and imaginary

parts of the transform are multiplexed together. X
must be dimensioned at least LX+2 in the calling pro-
gram, not LX. This subroutine will not do an inverse
transform.

14. References: Writeup of UES G612 COOL.
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SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

DIGITAL COMPUTING SECTION

IDENTIFICATION

Title: Hilbert transform of periodic data >
COOP Identification: UES G619 COOLHLBR J

Category: G6 Time Series Analysis

Programer: E. A. Flinn and J. F. Claerbout

Date: 23 September 1966

To compute the Hilbert transform (duadrature function)
of a time series. Since COOL is used, the time series is
assumed to be periodic outside the range of definition.
USUAGE
s Operational Procedure: This is a FORTRAN-63 subroutine,
with calling sequence: CALL COOLHLBR(N,X). This subroutine
calls COOL.

2. Parameters: N is the log (base 2) of the number of

data points. X is the data, dimensioned at least 2" in the
calling program, and type complex fhere.

On input, the real data series must be stored in the
real part of X, and the imaginary part must be zero.

On return, ?he real data series is stored in the real

part of scaled up by M1 he Hilbert transform is stored in

the imaginary part of X, also scaled up by'ZN_l.
- C-10 -
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Space Required: Very little in addition to the array

' +
for data, which requires ZN 1 locations in the calling
program.

Temporary Storage Required: Ncne

Printout: None

Error Printouts: None

Error Stops: None

Input and Qutput Tape Mountings: Not Applicable

Input and Output Formats: Not Applicable

10. Selective Jumps and Stops: None

ll. Timing: Dominated by two calls to CCOL

12.

13,

14.

Accuracy: The data is returned correct to ten decimal

places.

Cautions to User: The data must b= arranged as under

(2) above.

Notice that as far as this subroutine is concerned
the data is periodic outside the range of definition. End
effects ﬂay cause answers which the user does not expect.
For example, if the input is a pure sine wave, the user
expects the quadrature to be a pure cosine. Using this
subroutine, th;s turns out to be the case only if the data
series contains an integral number of cycles.

References: Writeup of UES G612 COOL.

- c-11 -



METHOD
The Hilbert transform of a function has a Fourier trans-
form which is (-1)% times the Fourier transform of the function.
COOL returns the real and imaginary parts of the Fourier transform
of‘a function calculated from zero to 2m, so that the real part
is symmetric about the middle and the imaginary part is anti-
symmetric.
If the Fourier transform of the function is A+iB, the Fourier
transform of the Hilbert transform is -B+iA. a1l COOLHLBR does
is erase the second half of the Fourier transform (the part
from m to zm), half-weight the end points, and call CcuL again
to transform back to the time domain.
The scale factor 2N-l comes from the fact that COOL gives

the unnormalized transform.

= €-12 =




SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

DIGITAL COMPUTING SECTION

IDENTIFICATION

Title: Fourier Transform of Two Data Series Simultaneously

COOP Identification: COOLTWO

Category: G6 Time Series Analysis

]

Programer: E. A. Flinn

Date: 10 June 1966

PURPOSE

To compute the Fourier series expansion, using COOL
(gq.v.), of two data series simultaneously.
USAGE
l. Operational Procedure: This is a FORTRAN-63 subroutine
with calling sequence.

CALL COOLTWO (N, X, SIGN, A, B).
2. Parameters:
N is the log (base 2) of the number of elements in X;
X contains the two data series, multiplexed in one complex
array, so that Re(X) contains one series and Im(X) contains
the other.
SIGN = -1.0 . The program has not yet been checked
out for inverse transformation:

A is the comple¥ (cosine and sine) fransform of the data
series stored in the real part of X;

= 1€=13 -




B is the complex Fourier transform of *he data series stored

in the imaginary part of X;

A and B are both of length 2**(N - 1) + 1.

s Space Required: about 7010 excluding arrays.

4. Temporary Storage Requirements: None

5k Printouts: None

6. Error Printouts: None

7. EFError Stops: Ncne

8. Input and Output Tape Mountings: None

9. Input and Output Formats: Not Applicable

10. Selective Jump and Stop Settings: Not Applicable

@

1 1Ny Timing: Timing is proportional to N°2N; transforming
8192 data points on the CDC 1604-B requires 25.0 seconds.

12. Accrracy: Same as COOL.

13. Cautions to User: This program has not been checked out

for inverse transformation. This program does not

apply the scale factor Y , since some users may wish
to apply the scale factor to the inverse, rather than
the direct transform. The number of data points must

be a power of 2.

14. Configuration: Standard COOP

15. References: Writeup of UES G612 COOL

D. METHOD

The method is due to J. W. Ccoley (see Reference 2 in

main body of this rgport,)
- C-14 -
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SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

DIGITAL COMEUTING SECTION

IDENTIFICATION

Title: Fast convolution of two time series using COOL.

COOP Identification: UES COOLVOLV

Category: Time Series Analysis
Programer: E. A. Flinn and D. W. McCowan
Date: 23 September 1966

PURPOSE -

P
To form the convoluticn of two time series, not by the

usual polynomial multiplication algorithm, but by forming the
two Fourier transforms (using COOL), multiplying them together,
and transforming back to the time domain. This is faster than
the usual procedure when

LX-LF >» 4 (2N + 1) (LX + LF)
where LX is the data series length, LF is the filter impulse
response length, and N is the log (base 2} of ILX + LF.

USUAGE

l. Operational Procedure: This is a FORTIAN-63 subroutine,

with calling sequence:
.CALL COCLVOLV (LX,X,LF,F)
2. Parametersz
X is the data series to be convolved, dimensioned at least
- C-15 -
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2J 1 in the calling program, where 2  1is the smallest

power of two larger than LX + LF.

4 c LX is the length of the data series to be convolved.

¥ . F is the filter to be convolved with X.

LF is the length of the filter.

3. Space Requiregz 30010 plus arrays.

4. Temporary Locations Required: None beyond filling out X

e

to the first power of two greater the LX + LF.

5. Alarms or Special Printout: None

e e e

. 6. Error Returns: If LX + LF > 213, LF is replaced by -LF d
i . . 4
¢ and control is returned to the calling program. E
. 8
j 7. Error Stops: None :
I?é‘

v 8. Tape Mountings: None

; 9. Formats: None 4

10. Jump and Stop Settings: None

11. Timing: Dominated by two calls to COOL for LX + LF
points each time. |

12. Accuracy: Gives the same results as polynomial multi-
plication to ten Adecimal places.

13. cCautions:  None

14. Configuration: Standard COCP

15. References: Writeups of COOL, COOLCON, AND COOLER
D. METHOD
The same method is used as used in COOLCON.

- C=16 -
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SEISMIC DATA LABORATORY
ALEXANDRIA,VIRGINIA

DIGITAL COMPUTING SECTION

IDENTIFICATION

Title: Two and Three Dimensional Fourier Transform Package

COOP Identification: G615 FT2DCCOL, FT3DCOOL

Category: G6 Time Series Analysis
Programer: D. W. McCowan
Date: 20 April 1966
PURPCSE

The subroutines in this package compute two and three
dimensional Fourier transforms. Their names are: FT2DCOOL,
FT3DCOOL, COOL, MA%RA63, and ECALE. As with COOL, the
dimensions on the data must be a power of two.
USAGE

1. Calling Sequence:?

CALL FT2DCCOL (X,N,M, SIGNI)
and
CALL FT3DCOOL (X,N,M,L, SIGNI)
2. Arguments:
X, the complex array in which the data is supplied and
in which the Fogrier transform is returned. 1If real
data is supplied, it must be put into the real part of

X and the imaginary part must be erased.

- ¢-17 -




N,M,L, the dimensions of X. Each of these numbers must be

a power of two. The number of complex points in the Fourier

transforn will be N/2 + 1, M/2 + 1, and L/2 +1 in each direct-g
ion.

SICNI, a switch determining the type of transform to be per-

L s e S e AL R
-

formed., SIGNI = -1.0 gives a direct transform (time to fre~-

quency), and SIGNI = +1.0 gives the inverse.

3. Space Required: 500 locations.

o e D YT

Lt

4. Temporary Storage: None

5. Alarms and Printouts: None

IR YE S Gy

R

6. Error Returns: None

7. Exror Stops: None

g 8. Tape Mountiings: None
g . 9. Formats: None

10. Jumps and Stop Settings: None

? 11. Time Required: Three-dimensional Fourier transforms require
£ NM + NL + ML one-dimensional Fovrier transforms. Two-dimen-

i

sional Fourier transforms require N + M one-dimensional
Fourier transforms. For the timing of one-dimensicnal Fourier
transforms, see References.

12. Accuracy: Same as COOL

13. Cautions to Users: None

1l4. Equipment Configuration: Standard COQP

'15. References: Writeup of UES G612 COOL 3/30/66
- C-18 -
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D.  METHOD
The direct 2 and 3-dimensional Fourier transforms/are

defined as:

| N-1 M-1
; = _.___._...l = Z Y { -],k =l
J M k.=0 k.=0
1 2
and
N-1 M-1 L-1
. o _ 1 « T ™ ‘
\ k.=0 k.=0 k.=0
2 3
-3.k -,k .
LR e A 2 Wy -3k,

Where Wl = exp(2mi/N); W2 = exp(2mi/N);: W3 = exp(2mi/L)
The two-dimensional transform is broken up %pto N+ M
one-dimensional transforms and the thrge—dimensional transform

is broken up into L two-dimensional transforms and NM one-dimen-

sional transforms.

- C-19 -~
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SEISMIC DATA LABORATORY i
ALEXANDRIA ,VIRGINIA

s

DIGITAL COMPUTING SECTION

A. IDENTIFICATION o

o T S
k3

Title: Spectral Matrix Estimates

COOP Identification: G618 SPECTRUM

ey

Category: Time Series Analysis

2 s

Programer: DokWu-MéCowan

w

by

s hgeiods

: Date: 10 July 1966

? B, .PURPOSE

é This is a package of three FORTRAN-63 subroutines for

.i computing an estimate of the spectral matrix for N channels
;i . ' of data stored on magnefic tape. It uses the hypex»ra%id

; Fourier transform routine COOL, and makes use of two taﬁes
% and the disc to cut running time to a minimum. The names

% of the three routines in the package are: SPECTRUM, DOTEM,

and SMOOTH. 1In addition to these, three more subroutines

ey

Ty A

e

are assumed to be on the system tape; théy are: COOL,

%
por
.
5

SKIPREC, and ERASE. Since all other routines are called
internally by SPECTRUM, only the calling sequence for it
will be given.

Co USAGE

1. Calling Sequence:

o

Call SPECTRUM (1T, JT, KT, S, NS, LF, X)

- Cc=-20 -
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2.

Arguments:

IiT,

NS,

the input subset tape number on which the N channels

of data are written. The length of each channel must
be exactly a power of two.

the number of a scratch tape.

the number of a scratch tape.

a triply subscripted FORTRAN-63 complex array used both
for internal manipulation and to return the computed
spectral matrix as a N by N by LF complex array with
subscripts varying in that order. Here N is the number
of channels read from the input tape label and LF is the
smoothed length of each spectral estimate. This array
must also be 4*LX+4 locations in length, since it is
also used for internal computations. LX is the length
of the input data channels read from the input tape
label. Remembering that:there are two locatinns used
for each complex number, the total dimensions on S in
the main program must be 2¥N*N*LF or 4*1X+4, whichever
is the larger. It is usually convenient to dimension it
as complex N by N by L F63 array in order to facilitate
use. L here is a number chosen so that S will be large
enough as described above.ﬂ

the number of times to apply the hanning smoothing

operation to the original estimates.

--¢-21 -
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§ LF, the returned length of the spectral estimates. This is
% * computed from the formula:

% , LF = (LX/(2%*NS) + 1

; LF must not be larger than 129.

% X, an array used for internal manipulation, containing at
ﬂ least 2*LF locations.

.é 3. Space Required: 502 locations

.? 4. Temporary Locations: None

é 5. Alarms or Special Printout: None

6. Error Returns: None

s

7. Error Stops: The subroutines stop if length of data series

exceeds 213.

8. Tape Mountings: See Arguments

N e et

Input and Output Formats: See Arguiients

i —
0
L ]

10. Jump Settings: None

1l. Time Required: A l0-channel, 4096-point, NS = 6 case

takes approximately 10 minutes of 1604 time.
12. Accuracy: Single precision

13. Caution to Users: The subroutine as written requires

that the data series should contain a number of points

exactly a power of two.

5 14, Equipment Configuration: Standard COOP
. 15. References: Writeup of subroutine ' * G612COOL, 6/1/66
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Writeup of program UES Z24 SUBSET

Stockham, T. G., 1966 High Speed Convolution and Cor-

relation, AFIPS Proceedings
D.  METHOD
Thé spectral matrix elements Sij(k) are usually defined
as Fourier transforms of correlation functions Rij(t), How-
ever, it must be realized that these correlations are transient
correlations where the functions are considered to be zero
outside the region of interest and 100% lags are taken. They

are defined as follows:

T-1-t
= ) + 1)
) Rij(t) z xi('r) XJ('!‘ )
=0
T-1
\
= , t
R..( Big X.(7) x.{(r - t) = R..( )
ij i j ji
=t
The spectral matrix element is then
T-1 T-1 T-1 T-1-t
% tk ' o
vy = , _ otk
54 (k) NS x (1 =€) W= )
t=0 r=t , t=1 =0
-tk
Xi(T) Xj(T+t) w -"“—E-—’

This can be shown to be equivalent to:

Sij(k)'=-Fl (k) Fj (k).

- =23 -
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This is recognized as the Fourier transfofm of the input
data computed over twice its length with zeros filled into
? the second half. The Cooley-Tukey hyper-rapid Fourier

i transform routine COOL is used to provide the high speed

4 necessary here.

Fach spectral matrix element is originally T + 1

complex points long between DC and the folding frequency.

3 It is then smoothed with a hanning window NS times to its

final length of LF points.
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